Concurrent Operation of RHIC (lons or PP) and NSRL

- Review of the switching operations that allow us to run various programs simultaneously.
- Examples of what we have done and can do.
- Complications that have arisen.

Switching Operations

- Pulse-to-Pulse Modulation (PPM)
- Context Switching (PPM on demand)
- Mode Switching (non-PPM)

PPM Switching

- This is the switching of device setpoints between Booster or AGS magnetic cycles (pulses). The setpoints are thereby modulated on a pulse-to-pulse basis; hence the name "ppm".
- Four different sets of setpoints are possible for both Booster and AGS. One therefore can have four "Users" of accelerator devices, each user specifying a set of setpoints.

The SuperCycle

- The users need a driver; this is the function of the SuperCycle.
- One can have multiple Booster users on a given supercycle, but only 1 AGS user.
- Each Booster user can have one or more magnetic cycles.
- The AGS user can have just one magnetic cycle.

Examples

Context Switching

- Sometimes we want to switch from one supercycle setup to another on demand.
- This is called "Context Switching", "Pulse Stealing" or "PPM on demand".
- Different supercycles are stored in tables that can be invoked on demand.
- For commissioning different modes of operation or for regular toggling back and forth between two beam operations programs.

Supercycle Pulse Manager

Mode Switching

 We use mode switching to switch devices that cannot be switched on a pulse-to-pulse basis, such as:

BTA and ATR magnets;

Booster and BTA stripping foils;

AGS Injection Kicker;

Tandem and TTB elements;

R-line (NSRL) elements;

AGS Warm and Cold Snakes.

Mode Switching Experience

- RHIC Gold <=> AGS Proton SEB
- RHIC Gold <=> Deuterons <=> PP
- RHIC Gold <=> Nsrl Ions
- RHIC Gold <=> AGS PP Setup
- RHIC Copper <=> AGS PP Setup
- RHIC PP <=> AGS Cold Snake Setup
- Nsrl Protons <=> Nsrl Iron (Titanium)

FY04 Program

7-Jun-2004 14-Jun-2004

TAPE (Tool for Automated Procedure Execution)

Gold and PP Mode Switch

FY05: RHIC (Copper and PP)and NSRL (Ions and PP)

- Copper for RHIC <=> PP for AGS.
- PP for RHIC <=> AGS Cold Snake development.
- PPM: NSRL & RHIC PP.
- Proton-Titanium mode switch for NSRL.

PP to AGS for RHIC

Complication: Booster Dwell Field Matching

Possible PP & NSRL PPM, but power too high for PS:

So...use a longer supercycle for PP and NSRL PPM:

Or Toggle between modes:

and:

Or no Booster cycles for AGS with the NSRL cycle:

Complications:

- Required spin resonance correction depends on AGS repetition period.
- If the NSRL cycle is taking PP, the accounting of spin up and down for AGS requires some care.

Other Complications:

- Linac timing is very sensitive to the placement of supercycle events.
- Sinusoidal timing of HEBT dipole for 200
 MeV polarimeter requires careful placement
 of supercycle events.
- Setting of BM2 between source and RFQ depends on whether NSRL is taking PP or not.
- NSRL extraction bump affects BTA trajectory for PP to RHIC.